tography. The crystalline material was dissolved in a small amount of hot chloroform and adsorbed on a small amount of silica gel, after which the solvent was evaporated (air stream). The silica gel was then added to the top of a 20-cm column of dry silica gel and covered with an additional **3** cm of fresh dry silica gel. The column was packed tightly with glass wool and inverted into a **250** ml graduate cylinder containing chloroform. After **2** hr the solvent level had reached the top of the inverted column. The column was removed and again inverted, and two fractions (already partially separated) were eluted with further addition of solvent. This procedure allowed efficient separation of two materials with very similar retention times. The first fraction from this separation was identified **as** unreacted 1. The second fraction gave yellow crystals of the **imino** ethyl ether **of 2-nitro-3,4,5,6-tetramethylacetanilide** (3): mp 79.5-81.0°; ir (CCl₄) 1660 $(*v*_{C-N})$ and 1520 and 1380 cm⁻¹ $(*v*_{NO2})$; uv $\lambda_{\text{max}}^{\text{MeoH}}$ **208** $m\mu$ (log ϵ 4.42); nmr (CCl₄) τ 8.68 (t, 3 H, $J = 7$ Hz), 8.27, **8.00,** and **7.86** *(s,* **3** 13 each), **7.76 (6** H, br s), and **5.85 (9, 2 H,** $J = 7$ Hz).

Anal. Calcd for C₁₄H₂₀N₂O₃: C, 63.62; H, 7.63; N, 10.60. Found: C, **63.46;** H, **7.53;** N, **10.57.**

The yields were not determined precisely, but for purified, sublimed material were about **25%** for **2** and **5%** for **3.** Initial yields before purification were probably appreciably higher, but 8ome tars were produced.

Irradiation of **1** in ethanol gave a fair yield of 2 but no **3.**

Diaminoprehnitene. From 1.—Catalytic hydrogenation of a solution of **0.2** g **(0.894** mmol) of **1** in **10** ml of absolute ethanol over **5%** Pd/C catalyst **(25** mg) at **20** psig and room temperature for **2.5** hr afforded, after filtration and evaporation of the solvent, an essentially quantitative yield of diaminoprehnitene **as** white crystals: mp **142-144"** (lit.* mp **144")** ; nmr (CCl,) *7* **7.86** and **7.92 (s, 6** H each) and **6.83** (br, **4** H). The compound darkened on standing in air.

From 2.-Hydrogenation of **2 as** described for 1 gave the same product (melting point, mixture melting point, and nmr).

Registry No.--1, 18801-63-3; **2,** 18801-64-4; **3,** 18801-65-5.

The Reaction of SF5Br with Fluoro Olefins

J. **STEWAFLD,~** L. **KEGLEY,** H. F. **WHITE,* AND** *G.* **L. GARD~**

Department **of** *Chemistry, Portland State University, Portland, Oregon* **97207**

Izeceived August **7,** *1968*

 $SF₅Cl$ will add to fluoro olefins³ at elevated temperatures and in the presence **of** free radicals to produce **2-chloropolyfluoroalkylsulfur** pentafluorides.

Also, S_2F_{10} will react with olefins and fluoro olefins under pressure and elevated temperatures to give small amounts of SF_5 addition products.^{4,5}

No report has appeared in the literature dealing with the $SF_{6}Br$ addition to fluoro olefins.⁶

We have found that $SF₅Br$, produced from the reacwe have found that ST_5DT , produced from the reaction of S_2F_{10} and Br_2 at elevated temperatures (eq 1), We have found that SF_5Br , produced from the reaction of S_2F_{10} and Br_2 at elevated temperatures (eq 1),
 $S_2F_{10} + Br_2 \xrightarrow{\Delta} 2SF_5Br$ (1)

$$
S_2F_{10} + Br_2 \xrightarrow{\Delta} 2SF_6Br \tag{1}
$$

(1) Taken from a M. **S. thesis to be submitted** to **PortlandStateUniversity.**

(2) To whom inquiries should be addressed.

(3) J. **R. Case,** N. **H. R,ay, and H. L. Roberts,** *J. Chem. Soc.,* **2070 (1961).**

(4) M. Tremblay, *Can. J.* **Chern., 48, 219 (1965).** *(5)* **H. L. Roberts,** *J.* **C,'lem.** *Soo.,* **3183 (1962).**

(6) C. Merrill found that SF_{^B}Br added to ethylene giving SF_{^{8}CH₂CH₂Br.</sub>} See C. Merrill, Ph.D. Thesis, University of Washington, Seattle, Wash., 1962.

 S_2F_{10} transferred Thus, replacing the hydrogens 12.41 $\begin{array}{c} 11.01 \\ 10.33 \\ 9.53 \end{array}$.
D 11.94 \bar{c} However, we have found that SF_c, SF₄, and ρé 25.29 Found, ⁹
Br 1.3880
 0.3880 \blacksquare over with the SF_bBr. Therefore, the actual yields are higher than the ones given here. Note: The boiling point of SF_bCH₂CH₂Br is 109.5° at 760 mm of Hg.
with fluorines in SF_bCH₂CH₂Br causes the boiling point $\frac{9.15}{8.25}$ 9.88 \circ 11.10 $\frac{12.67}{11.83}$ 9.91 ω 10.96 0.00000 0.00 ^b The yield was based on the assumption that only SF₅Br was added. 2-BROMOPOLYFLUOROALKYLSULFUR PENTAFLUORIDES ρ, 31.58
 29.49
 27.55
 24.71 Caled, $3,7,3,0$
 $-0,0,0$
 $-0,0,0$ 98539
08859 \circ $\mathscr{E}_{\mathcal{O}}$ Tield,^b **2232** Found 5688 Ë g ន
និត្ត និនី Caled a Boiling points were recorded at 766 \pm 1 mm of Hg. 99.5-100.5 Bp,ª °C $36 - 87$
 $74 - 75$
 $36 - 95$ Compd SF _b CH_2CHFBr SF ₅ $CHFCF_2Br$ $\rm SF_{\it s}CH_{\it t}CF_{\it s}Br$ $SF_3C_2F_3C1Br$

Тавья І

reacted at room temperature in a Pyrex glass vessel with CH_2 =CHF, CH_2 =CF₂, CHF=CF₂, and ClCF= $CF₂$ according to eq 2–5. t room temperature in a Pyrex glass vessel
 $\begin{aligned}\n&= \text{CHF, CH}_{2} = \text{CF}_{2}, \text{ CHF} = \text{CF}_{2}, \text{ and CICF} \\
\text{triding to eq } 2-5.\n\end{aligned}$ $\begin{aligned}\n\text{SF}_6\text{Br} + \text{CH}_{2} = \text{CHF} \longrightarrow \text{SF}_6\text{CH}_2\text{CHFBr} \qquad (2) \\
\text{SF}_6\text{Br} + \text{CH}_{2} = \text{CF} \longrightarrow \text{SF}_6\text{CH}_2\text{CF}$ $\begin{split} \text{C} = \text{CHF}, \text{ CH}_{2} = \text{CH}_{2}, \text{ CHF} = \text{CH}_{2}, \text{ and } \text{ClCF} = \ \text{diag to eq } 2-5. \ \text{S} \text{S} \text{Br} + \text{CH}_{2} = \text{CHF} \longrightarrow \text{S} \text{F}_{6} \text{CH}_{2} \text{CHFBr} \qquad \text{(2)} \ \text{S} \text{F}_{6} \text{Br} + \text{CH}_{2} = \text{CF}_{2} \longrightarrow \text{S} \text{F}_{6} \text{CH}_{2} \text{CF}_{2} \text{Br} \qquad \text{(3)} \ \text{S} \$

$$
SFiBr + CH2=CHF \longrightarrow SFiCH2CHFBr
$$
 (2)

$$
SF_{6}Br + CH_{7} = CHF \longrightarrow SF_{6}CH_{2}CHFBr
$$
 (2)
\n
$$
SF_{6}Br + CH_{7} = CF_{2} \longrightarrow SF_{6}CH_{2}CF_{2}Br
$$
 (3)
\n
$$
SF_{6}Br + CHF = CF_{2} \longrightarrow SF_{6}CHFCF_{2}Br
$$
 (4)
\n
$$
SF_{6}Br + CF_{6}CF_{6} \longrightarrow SF_{6}CF_{6}CHF
$$
 (5)

$$
SFsBr + CHF=CF2 \longrightarrow SFsCHFCF2Br
$$
 (4)

$$
SF_{6}Br + CH_{2} = CF_{2} \longrightarrow SF_{6}CH_{2}CF_{2}Br
$$
\n
$$
SF_{6}Br + CH_{2} = CF_{2} \longrightarrow SF_{6}CH_{2}CF_{2}Br
$$
\n
$$
SF_{6}Br + CHF = CF_{2} \longrightarrow SF_{6}CF_{2}F_{3}ClBr
$$
\n
$$
SF_{6}Br + CF = CF_{2} \longrightarrow SF_{6}C_{2}F_{3}ClBr
$$
\n
$$
F_{6} \rightarrow
$$
\n
$$
F_{7} \rightarrow
$$
\n
$$
F_{8} \rightarrow
$$
\n
$$
F_{9} \rightarrow
$$
\n
$$
F_{1} \rightarrow
$$
\n
$$
F_{2} \rightarrow
$$
\n
$$
F_{3} \rightarrow
$$
\n
$$
F_{4} \rightarrow
$$
\n
$$
F_{5} \rightarrow
$$
\n
$$
F_{6} \rightarrow
$$
\n
$$
F_{7} \rightarrow
$$
\n
$$
F_{8} \rightarrow
$$
\n
$$
F_{9} \rightarrow
$$
\n
$$
F_{1} \rightarrow
$$
\n
$$
F_{2} \rightarrow
$$
\n
$$
F_{3} \rightarrow
$$
\n
$$
F_{4} \rightarrow
$$
\n
$$
F_{5} \rightarrow
$$
\n
$$
F_{6} \rightarrow
$$
\n
$$
F_{7} \rightarrow
$$
\n
$$
F_{8} \rightarrow
$$
\n
$$
F_{9} \rightarrow
$$
\n

These reactions proceeded smoothly at room temperature and were essentially complete after **12** hr. However, reaction **2** showed signs of decomposition (darkening). The products when formed usually are clear, water-white, readily distillable liquids. In Table **I** are listed the boiling points along with the elemental analysis, molecular weight, and yield results for these new compounds. The infrared (ir) spectra were recorded for these compounds and a summary of the peaks together with their respective intensities is given in Table **11.**

TABLE I1 INFRARED SPECTRA DATA^

w, weak; m, medium; s, **strong; vs, very strong.**

Cross and coworkers⁷ reported that for compounds in which the $SF₅$ group is bound to an aliphatic hydrocarbon a very intense broad band centered on or about **870** cm-l is found. They assigned this to the S-F stretching modes. We observed the same behavior with our compounds. For SF₅CH₂CHFBr the broad band is centered near **870** em-'. These bands may also be attributed to the S-F stretching modes.

Since isomers could be formed by $SF₆Br$ adding nonselectively to the fluoro olefins, the vapor phase chromatography (vpc) of these compounds was studied.

^{*a*} The column temperature was $59 \pm 1^\circ$. Helium flow rate **was 2.5 ml/sec.**

The results of this work are given in Table **111.** Only one major component was found for these compounds.

The structures of the addition products were determined from their magnetic resonance spectra. The proton resonances were resolved into the various spinspin components in order to identify the nearest neighbors. Coupling constants corresponding to the various interactions are listed in Table IV as are the chemical shift values.

The $SF₅$ group, as found by Muller, Lantebur, and Svatos,⁸ contains four magnetically equivalent and one nonequivalent fluorine atoms $(A_4M$ system). The equatorial, A_4 , resonance is split into a doublet while the apex, M, resonance is grossly a pentet with "fine structure."

Where there is a magnetic difference between the equatorial and apex fluorines, it is reasonable to expect further splitting of the equatorial fluorine resonance by proton nuclei in adjacent alkyl groups. These splittings in turn can be used to identify the alkyl adjacent to the $SF₅$ group. With this basic assumption we have analyzed the proton and some of the fluorine resonance spectra of our compounds and found the spectra to be in good agreement with the proposed structures in Table IV.

In addition to the expected A₄M patterns, we have found additional splittings for $SF_sCH₂CHFBr$ and $SF₆CHFCF₂Br.$ In both cases an asymmetric carbon atom exists within the molecule to exert a nonequivalence on adjacent normally equivalent nuclei.⁹ In the SF₅CH₂CHFBr spectrum, described as an ABKX spectrum for the non- SF_5 resonance, where the protons are designated as A , B , and K and the fluorine X , one finds a nonequivalence of two methylene protons with respect to the terminal proton, but not with respect to the adjacent $SF₅$ group.

The proton chemical-shift values reflect the variation in the molecule's electronegativity as exhibited by other halopropanes.10 The methylene chemical shifts are in the range expected for the internal as opposed to the terminal positions.

The nmr resonance spectrum of the compound $SF_5C_2F_3ClBr$ has not been resolved. The SF_5 group again exhibits an A_4M pattern, and the $-CF_2$ -group can be differentiated from the =CF- group but nothing further can be said at present.

The nmr analysis shows that the $SF₅$ group has attached itself to the carbon of the olefin carrying the most hydrogens. Further varification of this result has been accomplished by the dehydrobromination of SF_5CFTCF_2Br to $SF_5CF=CF_2$ in 83% yield as shown in eq 6."

$$
SFsCFHCF2Br + KOH \xrightarrow{\text{petroleum enter}} SFsCF = CF2 (6)
$$

petroleum ether

 $SF_{5}Br$ should be a useful reagent for introducing SF_{5} groups into carbon compounds. It adds more readily and directly than either SF_5Cl or S_2F_{10} , and, like SF_5Cl ,

(8) **N. Muller, P. C.** Lantehur, **and** *G.* **F. Svatos,** *J. Amer. Chcm. Soc.,* **79,** 1044 **(1957).**

(9) **P. M. Nair and J D. Roberta,** *ibid.,* **79,** 4564 (1957). (10) **H.** F. **White,** *Anal. Chem.,* **86,** 1291 (1964).

⁽⁷⁾ L. H. **Cross,** *G.* **Cushing, and H. L. Roberts,** *Spactrochim. Acta,* **17,** 344 (1961).

⁽¹¹⁾ **This dehydrohalogenation procedure was used by J. R. Case, N. H. Ray, and H. C. Roberta,** *J. Cham. Soc., 2070* (1961), **in determining the orientx**tion of the addition reaction between SF₆Cl and CF₂=CFH.

TABLE IV

"Structure unknown. $=$ 11 cps. tailed analysis of this compound is incomplete; $J_{2,3}^{\text{H, B}} + J_{2,3}^{\text{H, B}}$

762 NOTES *The Journal* of *Organic Chemistry*

the $SF₅$ group bonds to carbon of the fluoro olefins carrying the most hydrogens.

Experimental Section

 $SF₅Br$ was prepared by the method of Cohen and MacDiarmid¹² in a 50-cc monel reactor equipped with an autoclave space-saver valve. No attempts were made to purify the $SF₅Br$ (possible contaminants are SF_6 , SF_4 , S_2F_{10} , and Br_2) other than transferring it from the monel reactor at -60 to -70° . All transfers of $SF₆Br$ and its adducts were performed with a Pyrex glass vacuum system equipped with Eck & Krebs stopcocks. In handling the adducts, Apiezon M and not Kel-F grease was used. Identification of the SF₅Br was made *via* its known ir spectrum.⁶

The fluoro olefins used in this study were purchased from the Peninsular Chemresearch Co. The ir spectrum of each one was taken and found to agree with their published spectrum.

The ir spectra were recorded on a Perkin-Elmer 137 Infracord spectrophotometer. The ir cell was made of monel metal and equipped with a Whitey-Brass valve. Path length of the cell was

8.25 cm.
Gas chromatographic separations were carried out with a Gas chromatographic separations were carried out with a preparative-scale 10-ft column containing 20% Carbowax absorbed on "Chromosorb **W."** An Aerograph Autoprep (Model A-700) was used.

The proton magnetic resonance (pmr) spectra were obtained with a Varian Model A-60 analytical nmr spectrometer. The fluorine spectra were obtained with a Varian Model HA-100 Analytical nmr spectrometer operating at 94.07 Mcps.

The vapor densities were determined using a Pyrex glass bulb having a calibrated volume of 200.7 cc.

Elemental analyses of these compounds were determined by the Huffman Laboratories.¹³

Reaction of $S\mathbf{F}_5$ **Br with the Fluoro Olefins.** $-S\mathbf{F}_5$ **Br was** transferred into a predried and weighed 1-1. Pyrex glass vessel equipped with an Eck & Krebs stopcock and lubricated with Kel-F grease. A weighed amount of olefin was then added and the temperature was slowly raised from - **195"** to room temperature. After the mixture was allowed to stand overnight, a liquid collected in the bottom of the reaction flask. The products were distilled in an all glass distillation set-up. This procedure was used in all cases and only modified in the reaction of $SF₅Br$ with $CH₂=CHF$ where some side reactions occurred.

In the particular case of CH_2 =CHF, the olefin was slowly admitted into the 1-l. reaction vessel (the vessel contained SF_5Br at room temperature) over a period of approximately 2 hr and then the mixture was allowed to stand overnight. With this procedure, no side reactions were noticed.

Dehydrobromination **of 2-Bromo-l,2,2-trifluoroethylsulfur** Pentafluoride.--A 50-ml round-bottom flask was fitted with a reflux condenser, the top of which was connected to a trap cooled to -80° . Potassium hydroxide (1.0 g) was added to 20 ml of petroleum ether (bp $90-110^{\circ}$). This mixture was heated until a gentle reflux was obtained and then cold SF₆CFHCF₂Br was added. After 1 hr, 1.5 g of potassium hydroxide was added and the mixture was heated for an additional **0.5** hr. A colorless liquid collected in the -80° trap and was shown by ir and molecular weight analysis to be $SF_5CF=CF_2$ (its ir spectrum agreed with the published spectrum, and the molecular weight found was 207.0, theoretical was 208.2). The yield was 83% .

Registry No.-SF5Br, **15607-89-3** ; SF5CH2CHFBr, **18801-66-6; SF₅CH₂CF₂Br,** CHFCF2Br, **18801-68-8.**

Acknowledgments.-We wish to thank Dr. Felix Aubke of the University of British Columbia for obtaining the fluorine nmr spectra and Dr. **A.** Levinson for obtaining the proton spectra. We are indebted to the Research Corporation for funds supporting this work and to Dr. Dale of the Monsanto CO. for his gift of S_2F_{10} .

⁽¹²⁾ E. Cohen and A. *G.* **MacDiarmid,** *Inorg. Chem.,* **4,** *1782 (1965).*

⁽¹³⁾ Huffman Laboratories, Ino., Wheatridge, Colo.